174. Regioselective Electrophilic Additions of Bicyclo[2.2.n]alk-2-enes Controlled by Remote Epoxide Functions ${ }^{1}$)

by François Claret ${ }^{2}$), Pierre-Alain Carrupt, and Pierre Vogel*
Institut de chimie organique de l'Université, 2, rue de la Barre, CH--1005 Lausanne

(31.VIII.87)

Abstract

The clectrophilic additions of 2 -nitrobenzenesulfenyl chloride to ($1 R S, 2 S R, 4 R S$)-spiro[bicyclo[2.2.1]hept5 -ene-2,2'-oxiranc] (12) and ($1 R S, 2 S R, 4 R S$)-spiro[bicyclo[2.2.2]oct-5-ene-2,2'-oxirane] (14) were not regioselective under conditions of kinetic control. However, good regioselectivity was observed for the addition of 2-nitro-benzenesulfenyl chloride to (1RS,2RS,4RS)-spiro[bicyclo[2.2.1]hept-5-ene-2,2'-oxirane] (13), giving ($1 R S, 2 S R, 4 S R, 5 R S, 6 R S$)-6-exo-(2-nitrophenylthio)spiro[bicyclo[2.2.1]heptane-2, 2^{\prime}-oxirane]-5-endo-yl chloride (24), and for the exo addition to ($1 R S, 2 R S, 4 R S$)-spiro[bicyclo[2.2.2]oct-5-ene-2,2'-oxirane] (15), giving prefcrentially ($1 R S, 2 S R, 4 S R, 5 R S, 6 R S$)-6-exo-(2-nitrophenylthio)spiro[bicyclo[2.2.2]octane-2,2'-oxirane]-5-endo-yl chloride (30). The facial selectivity (electrophilic exo vs. endo attack on the bicyclic alkene) depended on the relative configuration of the spiroepoxide ring in the bicyclo[2.2.2]octenes $\mathbf{1 4}$ and $\mathbf{1 5}$. The exo-epoxide $\mathbf{1 4}$ was attacked preferentially ($6: 1$) on the endo face by sulfenyl whereas exo attack was preferred (7:2) in the case of the endo-epoxide 15. No products resulting from transannular ring expansion of the spiro-epoxide moieties could be detected.

Introduction. - Epoxide moieties are able to affect the reactivity of homoconjugated π-functions. For instance, we have shown that 2 -exo,3-exo-epoxy-5,6-dimethylidenebicyclo[2.2.1]heptane (1) is significantly less reactive than 2,3-dimethylidenebicyclo[2.2.1]heptane toward strong dienophiles [2], probably because of a LUMO(epox-ide)-HOMO(diene) interaction in 1. Similar interaction is believed to intervene between the epoxide and anti-diene moieties of epoxy-tetraene 2, thus making the syn-diene unit the preferred site in Diels-Alder reactions ${ }^{3}$) [3]. We have reported also that epoxy-dienes 3 and 4 and epoxy-trienes 5 and 6 add to unsymmetrical dienophiles regioselectively, the regioselectivity depending on the relative configuration (exo vs. endo) of the oxiranes [4].

Recently, Adam and coworkers [5] have shown that on treatment with arenesulfenyl chloride ($\mathrm{E}^{+} \mathrm{X}^{-}$), spiro[bicyclo[2.2.1]hept-5-ene-2, 1^{\prime}-cyclopropane] (7) readily undergoes transannular ring expansion of the spirocyclopropane moiety to substituted brendanes $\mathbf{8}$

[^0]and 9. In contrast, electrophilic addition of the homologue $\mathbf{1 0}$ gave mixtures of unrearranged adducts 11.

In the light of these results, we have studied the additions of 2-nitrobenzenesulfenyl chloride (NBSCl) to spiro[bicyclo[2.2.n]alk-5-ene-2, 2^{\prime}-oxiranes] 12-15. We shall show that transannular ring expansion of the spirooxirane moieties does not occur, neither in the bicyclo[2.2.1]heptene nor in the bicyclo[2.2.2]octene series. Moreover, we have found that electrophilic addition is only regioselective for epoxy-alkenes $\mathbf{1 3}$ and 15 in which the O-atom of the oxirane moieties is in endo position ${ }^{4}$). Furthermore, we have found that the face selectivity of the additions of bicyclo[2.2.2]octene derivatives $\mathbf{1 4}$ and $\mathbf{1 5}$ depends on the relative configuration of the epoxide.

Results. - The known epoxides $\mathbf{1 2}$ and $\mathbf{1 3}$ were derived from bicyclo[2.2.1]hept-5-en2 -one [6] using known procedures [7] [8]. The same methods were applied in the preparation of the spiro[bicyclo[2.2.2]oct-5-ene-2,2'-oxiranes] 14 and 15. Heating cyclohexa-1,3diene (16) with 2-chloroacrylonitrile (17) gave a mixture of adducts 18 [9] (53\%) which was transformed into bicyclo[2.2.2]oct-5-en-2-one ($21 ; 63 \%$) on treatment with KOH in DMSO. Alternatively, $\mathbf{2 1}$ was obtained in 45% yield on treating the mixture of acetates 20 in anh. MeOH containing MeONa and formaline [10]. Adducts 20 were made by cycloaddition of 16 to l-cyanovinyl acetate (19) in the presence of a catalytical amount of ZnI_{2} at 20°.

16

Treatment of 21 with dimethyloxosulfonium methide ($\mathrm{Me}_{3} \mathrm{SOl} / \mathrm{DMSO}+\mathrm{NaH}[6]$) gave a $92: 8$ mixture 14/15. With dimethylsulfonium methide $\left(\mathrm{Me}_{3} \mathrm{SI} / \mathrm{DMSO} /\right.$ $\mathrm{THF}+\mathrm{NaH}[7]), \mathbf{2 1}$ gave a $8: 2$ mixture $\mathbf{1 4} / \mathbf{1 5}(74 \%)$ which was separated and purified by medium-pressure column chromatography on silical gel, affording $\mathbf{1 4}$ in $\mathbf{4 1 \%}$ and $\mathbf{1 5}$ in 10% yield.

$\mathrm{E}=$ 2-nitrobenzenesulfenyl (NBS)

[^1]The exo-epoxide 12 added 1 equiv. of NBSCl in CHCl_{3} at 20° and afforded a $1: 2$ mixture $22 / 23$ (79% isolated). Under the same conditions, the endo-epoxide $\mathbf{1 3}$ gave a single product 24 (75% isolated), no trace of the isomeric adduct 25 could be detected by $360-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude reaction mixture. As expected for bicyclo[2.2.1]hept-2ene systems [11], the electrophile added preferably to the exo face of the olefinic moieties of $\mathbf{1 2}$ and 13 . The relatively high regioselectivity of the reaction $\mathbf{1 3}+\mathrm{NBSCl} \rightarrow \mathbf{2 4}$ (the electrophile occupying the exo position at $\mathrm{C}(6)$, the nucleophile (Cl) the endo position at $\mathrm{C}(5)$) is noteworthy and in contrast to the weak regioselectivity ($1: 2$) observed for the addition $\mathbf{1 2}+\mathrm{NBSCl} \rightarrow \mathbf{2 2}+\mathbf{2 3}$. Preliminary results of the electrophilic additions of benzeneselenyl chloride and 2,4-dinitrobenzenesulfenyl chloride to 12 and $\mathbf{1 3}(360-\mathrm{MHz}$ 'H-NMR analysis of crude reaction mixtures) suggested similar selectivities as those observed with the reactions of NBSCl. In the former cases, unfortunately, adducts could not be isolated and purified because of their instability.

On treating the exo-epoxide ${ }^{4}$) $\mathbf{1 4}$ with 1 equiv. of NBSCl in CHCl_{3}, a $1: 1: 6: 6$ mixture $\mathbf{2 6 / 2 7 / 2 8 / 2 9}\left(70 \%\right.$, isolated) was obtained after 15 h at 20°. The major products 28 and 29 were isolated and purified by HPLC. Under the same conditions, the endo-epoxide ${ }^{4}$) 15 afforded a $6: 1: 1: 1$ mixture $\mathbf{3 0 / 3 1 / 3 2 / 3 3}(80 \%)$ from which $\mathbf{3 0}, \mathbf{3 2}$, and $\mathbf{3 3}$ could be isolated and purified by HPLC. It is interesting that facial selectivity (exo vs. endo face ${ }^{4}$)) of electrophilic addition is invested when going from 14 (endo preferred by 6:1) to $\mathbf{1 5}$ (exo face preferred by 7:2). For both modes of additions (exo and endo attack by E^{+}) on 14 , there is no regioselectivity. The same is also true for endo attack of 15 by the electrophilic S -atom of NBSCl . Nevertheless, a $6: 1$ regioselectivity for the exo addition of 15 is observed. The latter is of the same type as that of the addition $\mathbf{1 3}+\mathrm{NBSCl} \rightarrow \mathbf{2 4}$. All the adducts 22-33 were formed under conditions of kinetic control, i.e they were not isomerized under the conditions of their formation $\left(\mathrm{CHCl}_{3}, 20^{\circ}\right)$ or upon heating to 50° for several hours.

[^2]position of the exo and endo protons at $\mathrm{C}(3), \mathrm{C}(5)$, and $\mathrm{C}(6)$ in the bicyclo[2.2.1]heptyl derivatives 22-24 was established by their vicinal coupling constants with the adjacent bridgehead protons $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}-\mathrm{C}(4)$ [12]. The signals of $H-\mathrm{C}-\mathrm{Cl}$ and $H-\mathrm{C}-\mathrm{SAr}$ were easily distinguished by their NOE's observed upon irradiating the aromatic-proton signals of the ArS substitutent. Significantly, larger NOE's were observed for $H-\mathrm{C}-\mathrm{SAr}$ than for $H-C-C l$ signals. NOE measurements confirmed also the relative configurations (exo. vs. endo) of the protons at $\mathrm{C}(3), \mathrm{C}(5)$, and $\mathrm{C}(6)$. The trans relationship between the Cl and ArS substituents was expected since arenesulfenyl chlorides have been shown to undergo anti addition to a large variety of olefins [13]. The relative configuration (exo vs. endo) of the methano moieties of the epoxide rings in 14 and 15 and in adducts $22-24,28-30,32$, and 33 was established by NOE measurements involving the proton pairs shown in Fig. 1. The same technique confirmed the structural assignment made earlier for $\mathbf{1 2}$ and $\mathbf{1 3}$ in an unambiguous fashion [6].

On treating adduct 29 with an excess of $t-\mathrm{BuOK}$ in $\mathrm{THF}\left(-70^{\circ}\right.$ to $\left.20^{\circ}\right), 1$ equiv. of HCl was eliminated to give the unstable alkene 34 . The structure of 34 followed from its $360-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum with the help of NOE and double-irradiation experiments, thus confirming the regioselectivity of reaction $14+\mathrm{NBSCl} \rightarrow 29$.

Fig. 1
Discussion. - In contrast to the reaction of the spirocyclopropane derivative 7 which gave brendane derivatives 8 and 9 on reaction with arenesulfenyl chloride [5], the exoepoxide analog 12 (and also 14) did not give any products arising from the hypothetical rearrangement $\mathbf{3 5} \rightarrow \mathbf{3 6}$ involving transannular migration (1,3-alkyl shift) of the endo $\mathrm{C}-\mathrm{C}$ bond of the epoxide. This is possibly due to the inductive effect of the O-atom in 35 [14]. Neither did products result from the hypothetical rearrangement $37 \rightarrow 38$ involving migration of the alkoxy function in electrophilic additions of the endo-epoxide 13 (and 15). This may be due to the relative instability of the β-alkoxy substituted carbenium ion intermediate 38 (inductive destabilization effect of the β-alkoxy substituent [15-17a]).

Although the hypothetical α-alkoxy-substituted carbenium ion 36 is expected to be a relatively stable intermediate, its formation does not compete with nucleophilic quenching (by Cl^{-}) of the bridged sulfonium ions 35. The relatively high energy barrier to migration $35 \rightarrow \mathbf{3 6}$ might be interpreted in the following way. At the earlier stage of the hypothetical $\mathrm{C}-\mathrm{C}$ bond cleavage of the epoxide moiety in 35 , little positive charge
appears at $\mathrm{C}(2)$. Because of that, the inductive (permanent dipole) destabilizing effect of the O -atom dominates as its stabilizing polarisability effect $(\mathrm{n}(\mathrm{O}) \leftrightarrow \mathrm{pC}(+)$ conjugation $)$ cannot compete [17b].

In the case of the addition of benzeneselenyl chloride to the double bond of the bicyclo[2.2.2]oct-2-ene derivatives 18, both exo and endo attack led exclusively to the formation of adducts 39 and $\mathbf{4 0}$ [18] in which the nucleophile $\left(\mathrm{Cl}^{-}\right)$is attached to the C-atom most remote ($\mathrm{C}(5)$) from the electron-withdrawing Cl and CN substituents at $C(2)$. It is thus a surprise to find only weak or no regioselectivity in the electrophilic additions $\mathbf{1 2}+\mathrm{NBSCl} \rightarrow \mathbf{2 2}+\mathbf{2 3}$ and $\mathbf{1 4}+\mathrm{NBSCl} \rightarrow \mathbf{2 6 - 2 9}$. It could be argued that steric repulsions between the endo substituents at $\mathrm{C}(2)$ of 18 and the attacking Cl^{-}are responsible for the regioselectivity $\mathbf{1 8} \rightarrow \mathbf{3 9}$. Nevertheless, this argument is not valid in the case of the reaction $\mathbf{1 8} \rightarrow \mathbf{4 0}$. Therefore, the latter regioselectivity must be explained by an electronic factor. Inspection of molecular models suggests that the endo-methano group of the exo-epoxide functions in $\mathbf{1 2}$ and $\mathbf{1 4}$ is not bulking that the $\mathrm{CH}_{2}(3)$ group and thus should not affect the regioselectivity of the additions of olefins $\mathbf{1 2}$ and $\mathbf{1 4}$ through a steric factor. The lack of regioselectivity of additions $\mathbf{1 2}+\mathrm{NBSCl} \rightarrow \mathbf{2 2}+\mathbf{2 3}$ and $14+\mathrm{NBSCl} \rightarrow \mathbf{2 6}+\mathbf{2 7}+\mathbf{2 8}+\mathbf{2 9}$ agrees with that hypothesis. It further suggests that the dipole moment of the exo-epoxide functions has little or no influence on the regioselectivity of the quenching of cationic intermediates 35 by Cl ${ }^{-}$.

The relatively high regioselectivity of reactions $\mathbf{1 3}+\mathrm{NBSCl} \rightarrow \mathbf{2 4}$ and of the electrophilic exo addition $\mathbf{1 5}+\mathrm{NBSCl} \rightarrow \mathbf{3 0}+\mathbf{3 1}(6: 1)$ is also surprising. We attribute it to the electrostatic effect of the endo O-atom in the endo-epoxides 13 and 15 which repels attack of chloride ion onto the endo face of the epi-sulfonium intermediate 37, thus favouring attack at $\mathrm{C}(5)$ instead of $\mathrm{C}(6)$.

There is a correspondence between electrophilic additions to the endocyclic double bond in bicyclo[2.2.n]alk-5-en-2-ones 41 [18] [19], giving exclusively adducts 42 under conditions of kinetic control, and the Diels-Alder regioselectivity of the exocyclic dienes 43 toward an electron-poor dienophile such as methyl propynoate, which gave preferen-
tially cycloadducts 44 [20]. The regioselectivity of both types of reactions was attributed to the electron-donating ability of the homoconjugated carbonyl group because of a favourable hyperconjugative interaction of the type $\mathrm{n}(\mathrm{CO}), \sigma[\mathrm{C}(2), \mathrm{C}(1)], \pi[\mathrm{C}(6), \mathrm{C}(5)]$ [21] [22]. On the other hand no parallelism exists between the regioselectivity of electrophilic additions to the bicyclo[2.2.n]alk-5-en-2-yl derivatives 12-15 and that of the DielsAlder additions of epoxy-dienes $\mathbf{3}$ and 4 and epoxy-trienes 5 and 6 as it was found that the exo-epoxide moieties in $\mathbf{3}$ and $\mathbf{5}$, apparently, were playing the role of electron-withdrawing substituents and the endo-epoxide moieties in $\mathbf{4}$ and $\mathbf{6}$ acted as remote electron-donating groups [4].

Abstract

We are grateful to Hoffmann-La Roche \& Co. AG, Basel, the Fonds Herbette, Lausanne, and the Swiss National Science Foundation for financial support. We thank Mr. M. Rey and Mr. G. Jaccard for help in the high-field ${ }^{1} \mathrm{H}-\mathrm{NMR}$ measurements.

Experimental Part

1. General. See [19]. Prep. HPLC: Dupont Instruments 830 liquid chromatograph. IR spectra: Perkin-Elmer1420 instrument. MS: Nermag-R10-10C or Finningan-1020 spectrometer (GC/MS systems).
2. 2-exo- and 2 -endo-Chlorobicyclo[2.2.2]oct-5-ene-2-carbonitriles (18). A mixture of 1,3-cyclohexadiene (21 $\mathrm{g}, 0.20 \mathrm{~mol}$), 2-chloroacrylonitrile ($27.5 \mathrm{~g}, 0.31 \mathrm{~mol}$, freshly distilled from KOH pellets) and hydroquinone (50 mg) was heated under reflux in the dark for 20 h . After cooling to $20^{\circ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was added and the soln. filtered through a short column of silica gel ($300 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and evaporated: $23.2 \mathrm{~g}(53.2 \%)$, brownish solid [9].

Bicyclo[2.2.2 Joct-5-en-2-one (21). A soln. of $\mathrm{KOH}(30 \mathrm{~g}, 0.536 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ was added dropwise to a soln. of $18(23.2 \mathrm{~g}, 0.139 \mathrm{~mol})$ in DMSO (100 ml). After stirring at 20° for $15 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$ was added and the mixture extracted with pentane ($100 \mathrm{ml}, 5$ times). The combined org, extracts were washed with sat. aq. NaCl soln. ($100 \mathrm{~mol}, 4$ times), dried (MgSO_{4}), and evaporated: $10.7 \mathrm{~g}(63 \%$), colourless solid [9].
(1 RS, 2 SR, 4 RS)-Spirolbicyclo[2.2.2]oct-5-ene-2, 2^{\prime}-oxirane] (14) and (1RS,2RS,4RS)-Spirofbicyclo-[2.2.2/oct-5-ene-2, 2^{\prime}-oxirane] (15). A suspension of $\mathrm{NaH}(4 \mathrm{~g}, 0.13 \mathrm{~mol})$ in anh. DMSO (50 ml) was heated to $70-75^{\circ}$ for 45 min . After cooling to 20°, anh. THF (50 ml) was added. The soln. was cooled to -20°, and a soln. of trimethylsulfonium iodide ($27 \mathrm{~g}, 0.13 \mathrm{~mol}$, Fluka) in anh. DMSO ($100-150 \mathrm{ml}$) was added under stirring with in ca . 3 min . Stirring was continued for ca. 10 min until the end of H_{2} evolution. Then, $21(1 \mathrm{lg}, 0.09 \mathrm{~mol})$ was added and the mixture stirred at -20° for 7 min , then at 20° for 15 h . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{ml})$ and extracted with pentane ($100 \mathrm{ml}, 5$ times, then with 50 ml twice). The combined org. extracts were washed with a sat. aq. NaCl soln. (100 ml , twice), dried (MgSO_{4}), and evaporated: 11.72 g of colourless oil, $8: 2$ mixture $14 / 15$ contaminated with 21. Separation by CC on silica gel (Lobar, column $C, \mathrm{Et}_{2} \mathrm{O} /$ petroleum ether $1: 5,8 \mathrm{ml} / \mathrm{min}$) gave successively $5.05 \mathrm{~g}(41 \%)$ of $14,1.25 \mathrm{~g}(10 \%)$ of $\mathbf{1 5}$, and $3.55 \mathrm{~g}(32 \%)$ of 21 .

14: Colourless liquid, B.p. $75^{\circ} / 15$ Torr. UV ($\mathrm{CH}_{3} \mathrm{CN}$): 206 (400). IR (film): $3025,2925,2850,1600,1475,1455$, $1435,1380,1355,1230,1210,1180,1160,1120,1100,1070,1040,1010,985,955,905,885,835,805,780,710,680$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.34\left(m,{ }^{3} J=8\right) ; 6.23\left(m,{ }^{3} J=8, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6)\right) ; 2.69\left(d,{ }^{2} J=4.5, \mathrm{H}\right.$ of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)) ; 2.64(m, \mathrm{H}-\mathrm{C}(4)) ; 2.60\left(d,{ }^{2} J=4.5, \mathrm{H}\right.$ of epoxide cis to $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 1.99(m, \mathrm{H}-\mathrm{C}(1)$, $\left.\mathrm{H}_{\text {exo }}-\mathrm{C}(3)\right) ; 1.70,1.30\left(2 m, \mathrm{CH}_{2}(7), \mathrm{CH}_{2}(8)\right) ; 1.50\left(d d,{ }^{2} J=14,{ }^{3} J=2, \mathrm{H}_{\text {endo }}-\mathrm{C}(3)\right)$; NOE effects between \mathbf{H} of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)(2.69 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(1)(1.99 \mathrm{ppm}), \mathrm{H}$ of epoxide cis to $\mathrm{C}(2), \mathrm{C}(3)(2.60 \mathrm{ppm}) / \mathrm{H}_{\text {endo }}-\mathrm{C}(3)$ $(1.50 \mathrm{ppm}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.55 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; in brackets relative induced shift due to added $\left.\mathrm{Yb}(\mathrm{thd})_{3}\right): 136.0(d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=165, \mathrm{C}(5),[15.5]\right) ; 131.5\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166, \mathrm{C}(6),[19.0]\right) ; 61.8(s, \mathrm{C}(2),[92.4]) ; 55.9\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=172\right.$, $\left.C \mathrm{H}_{2}-\mathrm{C}(2),[100]\right) ; 38.1\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=140, \mathrm{C}(1),[42.1]\right) ; 34.5\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=130, \mathrm{C}(3)\right.$, [38.6]); $30.6(d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=140, \mathrm{C}(4),[18.0]\right) ; 24.4\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=130, \mathrm{C}(8),[12.9]\right) ; 21.4\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=134, \mathrm{C}(7),[21.6]\right) . \mathrm{MS}(70 \mathrm{eV}):$ $136\left(9, M^{+}\right), 106(22), 91(46), 80(45), 79(71), 78(100), 77(32), 66(81), 65(8), 59(8), 54(6), 53(7), 52(11), 41(23)$.

15: Colourless liquid. B.p. $75^{\circ} / 15$ Torr. UV ($\mathrm{CH}_{3} \mathrm{CN}$): $205(400)$. IR (film): 3025, 2925, 2850, 1710, 1605, 1470, $1455,1435,1380,1360,1330,1310,1280,1260,1210,1160,1120,1090,1070,1040,1005,970,950,925,905,875$, $845, \quad 800, \quad 790, \quad 710, \quad 680 .{ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(360 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): 6.40 \quad\left(d d d, \quad{ }^{3} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))=8.5\right.$, $\left.{ }^{3} J(\mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5))=6.5, \quad{ }^{4} J(\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(5))=1.5, \quad \mathrm{H}-\mathrm{C}(5)\right) ; \quad 6.30 \quad\left(d d d, \quad{ }^{3} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))=8.5\right.$, $\left.{ }^{3} J(\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(6))=6.5,{ }^{4} J(\mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(6))=1.5, \mathrm{H}-\mathrm{C}(6)\right) ; 2.77\left(d,{ }^{2} J=5, \mathrm{H}\right.$ of epoxide cis to $\left.\mathrm{C}(2), \mathrm{C}(3)\right)$;
$2.73\left(d d,{ }^{2} J=5,{ }^{4} J(\mathrm{H}\right.$ epoxide, $\mathrm{H}-\mathrm{C}(1))=1, \mathrm{H}$ of epoxide trans to $\left.\mathrm{C}(2), \mathrm{C}(3)\right): 2.69(m, \mathrm{H}-\mathrm{C}(4)) ; 2.05(\mathrm{~m}$, $\mathrm{H}-\mathrm{C}(1)) ; 1.84\left(d d,{ }^{2} J=13.5,{ }^{3} J=2.2, \mathrm{H}_{\text {end }}-\mathrm{C}(3)\right) ; 1.73,1.53,1.39,1.28\left(4 m, \mathrm{CH}_{2}(7), \mathrm{CH}_{2}(8)\right) ; 1.53(m$, $\mathrm{H}_{e x o}-\mathrm{C}(3)$); NOE between H of epoxide cis to $\mathrm{C}(2), \mathrm{C}(3)(2.77 \mathrm{ppm}) / \mathrm{H}_{\text {exo }}-\mathrm{C}(3)(\mathrm{I} .53 \mathrm{ppm}), \mathrm{H}$ of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)(2.73 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(1)(2.05 \mathrm{ppm}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.55 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; in brackets relative induced shift due to $\left.\mathrm{Yb}(\text { thd })_{3}\right): 134.9\left(d,{ }^{J} J(\mathrm{C}, \mathrm{H})=166, \mathrm{C}(5),[12.6]\right) ; 131.7\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168, \mathrm{C}(6),[19.8]\right) ; 61.9(s, \mathrm{C}(2),[94.0]) ; 52.9$ $\left(t,{ }^{t} J(\mathrm{C}, 1 \mathrm{H})=172, \mathrm{CH}_{2}-\mathrm{C}(3),[100]\right) ; 37.9\left(d,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=136, \mathrm{C}(1),[42.2]\right) ; 35.7\left(t,{ }^{!} J(\mathrm{C}, \mathrm{H})=132, \mathrm{C}(3),[39.9]\right) ;$ $30.5\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=138, \mathrm{C}(4),[18.4]\right) ; 24.0\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=132, \mathrm{C}(8),[14.9]\right) ; 22.5\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=130, \mathrm{C}(7),[19.8]\right) ;$ the absolute $\mathrm{Yb}(\text { thd })_{3}$-induced shifts were $c a .30 \%$ larger for 15 than for 14 (more favourable complexation of the endo-epoxide moiety in 15 than the exo-epoxide moiety in 14 due to differential steric effect bet ween the etheno and ethano bridges). MS (70 eV): $136\left(7, M^{+`}\right), 106(26), 91(49), 80(49), 79(69), 78(100), 77(30), 66(7), 65(9), 59(7)$, 54 (7), 53 (7), 52 (11), 41 (24).
3. Addition of NBSCl to ($1 \mathrm{RS}, 2 \mathrm{SR}, 4 \mathrm{RS}$)-Spirolbicyclo[2.2.1]hept-5-ene-2,2'-oxirane] (12). A mixture of 12 ($170 \mathrm{mg}, 1.4 \mathrm{mmol}$), $\mathrm{NBSCl}\left(262 \mathrm{mg}, 1.4 \mathrm{mmol}\right.$), and $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ was allowed to stand at 20° for 2 h (control of the complete disappearance of 12 by TLC on silical gel, $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether $1: 1$). Column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.1: 1\right)$ gave a $1: 2$ mixture $22 / 23(341 \mathrm{mg}, 79 \%)$ which was separated by HPLC (silica $\mathrm{gel}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), giving first $105 \mathrm{mg}(24 \%)$ of 22 and then $208 \mathrm{mg}(48 \%)$ of 23 , after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane.
(1RS, $2 \mathrm{RS}, 4 \mathrm{SR}, 5 \mathrm{RS}, 6 \mathrm{RS}$)-6-cxo-(2-Nitrophenylthio) spiro[bicyclo/2,2.1/heptane-2,2'-oxirane $/-5$-endo-yl Chloride (22). Yellow crystals. M.p. 121123°. UV ($\mathrm{CH}_{3} \mathrm{CN}$): 245 (13900), 272 (sh, 4500), 369 (3300). IR (KBr): $2970,1585,1560,1505,1480,1450,1430,1390,1340,1295,1250,1105,1055,1040,1015,990,920,900,890,865$, 840. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.20\left(d d,{ }^{3} J=8.5,{ }^{4} J=1.5\right), 7.58\left(d d d,{ }^{3} J=8.5,7,{ }^{4} J=1.5\right), 7.51\left(d d,{ }^{3} J=8.5\right.$, $\left.{ }^{4} J=1.5\right), 7.32 \quad\left(d d d,{ }^{3} J=8.5,7,{ }^{4} J=1.5,4\right.$ arom. H); $4.16 \quad\left(d d d,{ }^{3} J\left(\mathrm{H}_{\text {exu }}-\mathrm{C}(5), \mathrm{H}_{\text {endo }}-\mathrm{C}(6)\right)=4\right.$, $\left.{ }^{3} J\left(\mathrm{H}-\mathrm{C}(4), \mathrm{H}_{e x o}-\mathrm{C}(5)\right)=4,{ }^{4} J\left(\mathrm{H}_{e x o}-\mathrm{C}(5), \mathrm{H}_{e x o}-\mathrm{C}(3)\right)=2, \mathrm{H}-\mathrm{C}(5)\right) ; 3.44\left(d d,{ }^{3} J\left(\mathrm{H}_{e x a}-\mathrm{C}(5), \mathrm{H}_{e n d o}-\mathrm{C}(6)\right)=4\right.$, $\left.{ }^{4} J\left(\mathrm{H}_{s y n}-\mathrm{C}(7), \mathrm{H}_{\text {end }}-\mathrm{C}(6)\right)=2, \mathrm{H}-\mathrm{C}(6)\right) ; 3.06\left(d,{ }^{2} J=4.5, \mathrm{H}\right.$ of epoxide cis to $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 2.98\left(d,{ }^{2} J=4.5, \mathrm{H}\right.$ of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)) ; 2.77(m, \mathrm{H}-\mathrm{C}(4)) ; 2.45\left(d d,{ }^{2} J=14.5,{ }^{4} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(3), \mathrm{H}_{\text {cnti }}-\mathrm{C}(7)=2.5, \mathrm{H}_{\text {endo }}-\mathrm{C}(3)\right)\right.$; $2.06-1.93\left(m, \mathrm{CH}_{2}(7), \mathrm{H}-\mathrm{C}(1)\right) ; 1.80\left(d d d,{ }^{2} J=14.5,{ }^{3} J\left(\mathrm{H}_{e x a}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)\right)=5,{ }^{4} J\left(\mathrm{H}_{e x 0}-\mathrm{C}(3), \mathrm{H}_{e x u}-\mathrm{C}(5)\right)=2\right.$, $\left.\mathrm{H}_{e x 0}-\mathrm{C}(3)\right)$; NOE between arom. $\mathrm{H}(7.51 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(6)(3.44 \mathrm{ppm})$, arom. $\mathrm{H} / \mathrm{H}-\mathrm{C}(1)(1.93 \mathrm{ppm})$, arom. H / H of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)(2.98 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(6) / \mathrm{H}-\mathrm{C}(5)(4.16 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(6) / \mathrm{H}-\mathrm{C}(1)(1.93 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(6) / \mathrm{H}$ of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)(2.98 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(6) / \mathrm{H}_{\text {endo }}-\mathrm{C}(3)(2.45 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(5) / \mathrm{H}-\mathrm{C}(4)(2.77 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(5) /$ $\mathrm{H}_{\text {ani }}-\mathrm{C}(7)(2.06 \mathrm{ppm})$. CI-MS $\left(\mathrm{NH}_{3}\right): 331\left(7, M^{+-}+18\left({ }^{37} \mathrm{Cl}\right)\right), 329\left(16, M^{+-}+18\left({ }^{35} \mathrm{Cl}\right)\right.$), $284(30), 283(20), 282$ (87), 281 (16), 246 (12), 157 (34), 138 (50), 126 (74), 125 (96), $93(53), 80(100)$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{3} \mathrm{~S}$ (311.79): C 53.93, H 4.53, N 4.49; found: C 54.25, H 4.56, N 4.64.
($1 \mathrm{RS}, 2 \mathrm{RS}, 4 \mathrm{SR}, 5 \mathrm{SR}, 6 \mathrm{SR}$)-5-exo-(2-Nitrophenylthio) spiro/bicyclo[2.2.1] heptane-2,2'-oxirane 1 - 6 -endo-yl Chloride (23). Yellow crystals. M.p. 72-74 ${ }^{\circ}$ UV ($\mathrm{CH}_{3} \mathrm{CN}$): 245 (15000), $272(\mathrm{sh}, 4600$), $370(3500)$: IR (KBr): 2960, $2920,1590,1560,1505,1485,1450,1430,1410,1385,1360,1330,1305,1290,1270,1260,1245,1215$, $1165,1150,1135,1100,1075,1055,1040,1020,960,940,915,890 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.22$ $\left(d d,{ }^{3} J=8,{ }^{4} J=1.5\right), 7.60\left(d d d,{ }^{3} J=8,8,{ }^{4} J=1.5\right), 7.54\left(d d,{ }^{3} J=8,{ }^{4} J=1.5\right), 7.33\left(d d d,{ }^{3} J=8,8,{ }^{4} J=1.5\right.$, 4 arom. H$) ; 4.19\left(d d,{ }^{3} J\left(\mathrm{H}_{c n d o}-\mathrm{C}(5), \mathrm{H}_{e x o}-\mathrm{C}(6)\right)=3.5,{ }^{3} J\left(\mathrm{H}-\mathrm{C}(1), \mathrm{H}_{e x \rho}-\mathrm{C}(6)\right)=4.5, \mathrm{H}_{e x \rho}-\mathrm{C}(6)\right) ; 3.38(d d$, $\left.{ }^{3} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))=3.5,{ }^{4} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(5), \mathrm{H}_{s y n}-\mathrm{C}(7)\right)=1, \mathrm{H}_{\text {endo }}-\mathrm{C}(5)\right) ; 3.17\left(d,{ }^{2} J=4.5, \mathrm{H}\right.$ of epoxide cis to $\mathrm{C}(2), \mathrm{C}(3)) ; 3.10\left(d,{ }^{2} J=4.5, \mathrm{H}\right.$ of epoxide trans to $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 2.61(\mathrm{~m}, \mathrm{H}-\mathrm{C}(4)) ; 2.22(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 2.0(\mathrm{~m}$, $\mathrm{CH}_{2}(7), \mathrm{CH}_{2}(3)$); NOE between arom. $\mathrm{H}(7.54 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(5)$ (3.38 ppm), arom. $\mathrm{H} / \mathrm{H}-\mathrm{C}(4)$ (2.61 ppm), $\mathrm{H}_{\text {endo }}-\mathrm{C}(5) / \mathrm{H}-\mathrm{C}(4)(2.61 \mathrm{ppm}), \mathrm{H}_{e n d o}-\mathrm{C}(5) / \mathrm{H}_{e n d o}-\mathrm{C}(3)(2.0 \mathrm{ppm}), \mathrm{H}_{e x o}-\mathrm{C}(6)(4.19 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(1)(2.22 \mathrm{ppm})$, $\mathrm{H}_{e x 0}-\mathrm{C}(6) / \mathrm{H}_{a n t i}-\mathrm{C}(7)(2.0 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(1) / \mathrm{H}$ of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)(3.10 \mathrm{ppm})$. CI-MS $\left(\mathrm{NH}_{3}\right): 330(12), 329$ (55), 328 (17), 327 (74), $313\left(4, M^{+\cdot}\left({ }^{37} \mathrm{Cl}\right)\right.$), $312(6), 311$ (19, $M^{+\cdot}\left({ }^{35} \mathrm{Cl}\right)$), 310 (13), 309 (31), 295 (23), 280 (13), 279 (19), 278 (36), 277 (87), $276(16), 271(17), 174(26), 157(50), 140(60), 138(82), 125(60), 123(65), 108(40), 94(81)$, 93 (76), 91 (100). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{3} \mathrm{~S}$ (311.79): C 53.93, H 4.53, N 4.49; found: C 54.13, H 4.50, N 4.61 .
4. Addition of NBSCl to (1 RS,2RS,4RS)-Spiro[bicyclo[2.2.1]hept-5-ene-2,2'-oxirane] (13). A mixture of 13 ($200 \mathrm{mg}, 1.6 \mathrm{mmol}$), $\mathrm{NBSCl}(310 \mathrm{mg}, 1.6 \mathrm{mmol})$, and $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ was allowed to stand at 20° for 2 h . The crude mixture was purified by flash chromatography on silica gel ($\mathrm{E}_{2} \mathrm{O} /$ petroleum ether $1: 1$), yielding 374 mg (75%) of pure 24, after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane.
(1 RS, 2SR, 4 SR, 5 RS, 6 RS)-6-exo-(2-Nitrophenylthio) spiro/bicyclo[2.2.I]heptane-2,2'-oxirane $/-5$-endo- y l Chloride (24). Yellow crystals. M.p. 134-137 . UV ($\mathrm{CH}_{3} \mathrm{CN}$): 244 (14000), 272 (sh, 4100), 371 (3300). IR (KBr): 2980, 2950, 2930, 1585, 1555, 1505, 1450, 1430, 1395, 1365, 1330, 1305, 1290, 1250, 1205, 1170, $1155,1145,1125,1100,1055,1040,1010,990,945,930,910,890,850,810 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: $8.03\left(d d,{ }^{3} J=8,{ }^{4} J=1.5\right), 7.53\left(d d,{ }^{3} J=8,{ }^{4} J=1.5\right), 7.08,6.72\left(2 d d d,{ }^{3} J=8,7,{ }^{4} J=1.5,4\right.$ arom. H); $4.12 \quad\left(d d, \quad{ }^{3} J\left(\mathrm{H}_{e x u}-\mathrm{C}(5), \mathrm{H}_{e n d v}-\mathrm{C}(6)\right)=4.5, \quad{ }^{4} J\left(\mathrm{H}_{e n d o}-\mathrm{C}(6), \mathrm{H}_{s y n}-\mathrm{C}(7)\right)=2.5, \quad \mathrm{H}_{e n d o}-\mathrm{C}(6)\right) ; \quad 4.03 \quad(d d d$,
$\left.{ }^{3} J\left(\mathrm{H}_{e x 0}-\mathrm{C}(5), \mathrm{H}_{e n d o}-\mathrm{C}(6)\right)=4.5, \quad{ }^{3} J\left(\mathrm{H}-\mathrm{C}(4), \mathrm{H}_{e x 0}-\mathrm{C}(5)\right)=4.5, \quad{ }^{4} J\left(\mathrm{H}_{e x n}-\mathrm{C}(3), \mathrm{H}_{e x 0}-\mathrm{C}(5)\right)=1.5, \quad \mathrm{H}_{e x 0}-\mathrm{C}(5)\right) ;$ 2.64, $2.53\left(2 m, \mathrm{CH}_{2}-\mathrm{C}(2)\right) ; 2.31\left(d d,{ }^{2} J=14,{ }^{4} J\left(\mathrm{H}_{e n d o}-\mathrm{C}(3), \mathrm{H}_{a n t i}-\mathrm{C}(7)\right)=3.5, \mathrm{H}_{\text {endo }}-\mathrm{C}(3)\right) ; 2.27(m, \mathrm{H}-\mathrm{C}(4))$; $1.73(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 1.68-1.58\left(\mathrm{~m}, \mathrm{CH}_{2}(7)\right) ; 1.40\left(\mathrm{~m}, \mathrm{H}_{e x 0}-\mathrm{C}(3)\right) ;$ NOE between arom. $\mathrm{H}(7.53 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(6)(4.12$ $\mathrm{ppm}), \mathrm{H}-\mathrm{C}(6) / \mathrm{H}-\mathrm{C}(1)(1.73 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(5)(4.03 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(4)(2.27 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(5) / \mathrm{H}_{\text {anti }} \mathrm{C}(7)(1.60 \mathrm{ppm})$. CI-MS $\left(\mathrm{NH}_{3}\right): 331\left(6, M^{+\cdot}+18\left({ }^{37} \mathrm{Cl}\right)\right.$), $329\left(17, M^{+}+18\left({ }^{35} \mathrm{Cl}\right)\right.$), $284(29), 283(18), 282(80), 281$ (11), $157(18)$, $149(27), 141(31), 140(29), 139(13), 138(38), 137(12), 136(32), 127(14), 126(100)$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{3} \mathrm{~S}$ (311.79): C 53.93, H 4.53, N 4.49; found: C 53.95, H 4.53, N 4.49 .
5. Addition of NBSCl to 14. A mixture of $14(0.5 \mathrm{~g}, 3.7 \mathrm{mmol}), \mathrm{NBSCl}(0.7 \mathrm{~g}, 3.7 \mathrm{mmol})$, and $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ was allowed to stay at 20° for $15 \mathrm{~h}\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right.$: 1:1:6:6 mixture of $\mathbf{2 6 / 2 7 / 2 8 / 2 9)}$. Chromatography on silica gel (Lobar, column $\mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave $840 \mathrm{mg}(70 \%)$ of a mixture which was separated by HPLC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielding first 340 mg (28%) of $\mathbf{2 9}$ and then $335 \mathrm{mg}(28 \%)$ of $\mathbf{2 8}$, after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane.
(1RS,2RS,4SR,5SR,6SR)-6-endo-(2-Nitrophenylthio) spiro[bicyclo[2.2.2]octane-2,2'-oxirane]-5-exo-yl Chloride (28). Yellow erystals. M.p. 139-140 . UV ($\mathrm{CH}_{3} \mathrm{CN}$): 245 (13900), 272 (sh, 4600), 370 (3100). IR (KBr): $3080,3030,2980,2930,2910,2860,1590,1560,1510,1465,1450,1400,1365,1325,1300,1260,1245,1185,1170$, $1145,1130,1100,1085,1055,1040,1025,980,970,955,925,890,850 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 7.65\left(d d,{ }^{3} J=8\right.$, $\left.{ }^{4} J=1.5\right), 7.19\left(d d,{ }^{3} J=8,{ }^{4} J=1.5\right), 6.83\left(d d d,{ }^{3} J=8,7.5,{ }^{4} J=1.5\right), 6.49\left(d d d,{ }^{3} J=8,{ }^{3} J=7.5,{ }^{4} J=1.5,4\right.$ arom. $\mathrm{H}) ; 3.70\left(d d d,{ }^{3} J\left(\mathrm{H}_{e n d o}-\mathrm{C}(5), \mathrm{H}_{e x o}-\mathrm{C}(6)\right)=4,{ }^{3} J\left(\mathrm{H}-\mathrm{C}(4), \mathrm{H}_{e n d o}-\mathrm{C}(5)\right)=4,{ }^{4} J\left(\mathrm{H}_{e n d o}-\mathrm{C}(5), \mathrm{H}_{s y n}-\mathrm{C}(8)\right)=1.5\right.$, $\left.\mathrm{H}_{\text {endo }}-\mathrm{C}(5)\right) ; 3.46\left(d d,{ }^{3} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))=4,{ }^{3} J\left(\mathrm{H}-\mathrm{C}(1), \mathrm{H}_{\text {exo }}-\mathrm{C}(6)\right)=3, \mathrm{H}_{\text {exo }}-\mathrm{C}(6)\right) ; 2.52\left(d,{ }^{2} J=5, \mathrm{H}\right.$ of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)) ; 2.36\left(d,{ }^{2} J=5, \mathrm{H}\right.$ of epoxide cis to $(\mathrm{C}(2), \mathrm{C}(3)) ; 2.01-1.88\left(\mathrm{~m}, \mathrm{H}_{e x 0}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(7)\right)$; $1.63(m, \quad \mathrm{H}-\mathrm{C}(4)) ; \quad 1.55\left(d d d,{ }^{2} J=15, \quad{ }^{3} J\left(\mathrm{H}_{e n d o}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)\right)=2.5, \quad{ }^{4} J\left(\mathrm{H}_{e n d o}-\mathrm{C}(3), \mathrm{H}_{a n t}-\mathrm{C}(8)\right)=2.5\right.$, $\left.\mathrm{H}_{\text {endo }}-\mathrm{C}(3)\right) ; 1.45-1.25\left(m, \mathrm{H}-\mathrm{C}(7), \mathrm{CH}_{2}(8)\right) ; 1.23(m, \mathrm{H}-\mathrm{C}(1))$; NOE between arom. $\mathrm{H}(7.19 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(6)(3.46$ $\mathrm{ppm})$, arom. $\mathrm{H} / \mathrm{H}-\mathrm{C}(1)(1.23 \mathrm{ppm}), \mathrm{H}_{\text {endo }}-\mathrm{C}(3)(1.55 \mathrm{ppm}) / \mathrm{H}_{\text {enlo }}-\mathrm{C}(5)(3.70 \mathrm{ppm}), \mathrm{H}_{\text {exo }}-\mathrm{C}(6) / \mathrm{H}_{\text {anti }}-\mathrm{C}(7$ or 8$)$, $\mathrm{H}-\mathrm{C}(1) / \mathrm{H}$ of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)(2.52 \mathrm{ppm}), \mathrm{H}_{\text {endo }}-\mathrm{C}(3) / \mathrm{H}$ of epoxide cis to $\mathrm{C}(2), \mathrm{C}(3)$ (2.36 ppm). MS (70 $\mathrm{eV}): 327\left(1.1, M^{+\cdot}\left({ }^{37} \mathrm{Cl}\right)\right.$), $325\left(3.3, M^{+\cdot}\left({ }^{35} \mathrm{Cl}\right)\right.$), 173 (10), 171 (32), 139 (19), 138 (49), 107 (14), 105 (21), 93 (25), 91 (44), 80 (14), 79 (100). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{3} \mathrm{~S}$ (325.81): C $55.30, \mathrm{H} 4.95, \mathrm{~N} 4.30$; found: $\mathrm{C} 55.41, \mathrm{H} 4.96, \mathrm{~N}$ 4.45 .
(1RS, 2 RS, 4 SR, $5 \mathrm{RS}, 6 \mathrm{RS}$)-5-endo-(2-Nitrophenylthio) spiro/bicyclo/2.2.2 /octane-2,2'-oxirane/-6-exo-yl Chloride (29). Yellow crystals. M.p. 118-120 ${ }^{\circ}$. UV ($\mathrm{CH}_{3} \mathrm{CN}$): 245 (13500), 272 (sh, 4400), 370 (3000). IR (KBr): $3080,3030,2930,2910,2870,1980,1585,1560,1505,1475,1450,1430,1395,1330,1300,1290,1270,1245,1210$, $1195,1180,1170,1145,1125,1100,1070,1055,1045,970,960,940,920,895,850,830,800 .{ }^{1} \mathrm{H}-\mathrm{NMR}(360 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.63\left(d d,{ }^{3} J=8,{ }^{4} J=1.5\right), 7.07\left(d d,{ }^{3} J=7.5,{ }^{4} J=1\right), 6.79\left(d d d,{ }^{3} J=8,7.5,{ }^{4} J=1.5\right), 6.48\left(d d d,{ }^{3} J=8,7.5\right.$, ${ }^{4} J=1.5,4$ arom. H); $3.85\left(d d d,{ }^{3} J\left(\mathrm{H}_{e \times 0}-\mathrm{C}(5), \mathrm{H}_{\text {endo }}-\mathrm{C}(6)\right)=5,{ }^{3} J\left(\mathrm{H}-\mathrm{C}(1), \mathrm{H}_{\text {endo }}-\mathrm{C}(6)\right)=3,{ }^{4} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(6)\right.\right.$, $\left.\left.\mathrm{H}_{s y n}-\mathrm{C}(7)\right)=\mathbf{1 . 5}, \mathrm{H}_{\text {endo }}-\mathrm{C}(6)\right) ; 3.35\left(d d d,{ }^{3} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))=5,{ }^{3} J\left(\mathrm{H}-\mathrm{C}(4), \mathrm{H}_{e x o}-\mathrm{C}(5)\right)=2,{ }^{4} J\left(\mathrm{H}_{e x o}-\mathrm{C}(3)\right.\right.$, $\left.\left.\mathrm{H}_{e x o}-\mathrm{C}(5)\right)=2, \mathrm{H}_{e x o}-\mathrm{C}(5)\right) ; 2.14\left(d,{ }^{2} J=5, \mathrm{H}\right.$ of epoxide trans to $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 2.06\left(d,{ }^{2} J=5, \mathrm{H}\right.$ of epoxide cis to $\mathrm{C}(2), \mathrm{C}(3)) ; 1.94\left(d d d,{ }^{2} J=15,{ }^{3} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)\right)=3,{ }^{4} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(3), \mathrm{H}_{\text {anti }}-\mathrm{C}(8)\right)=3, \mathrm{H}_{\text {end }}-\mathrm{C}(3)\right) ; 1.89$ $\left(m, \mathrm{H}_{a n t i}-\mathrm{C}(7)\right) ; 1.76\left(\mathrm{~m}, \mathrm{H}_{s y n}-\mathrm{C}(7)\right) ; 1.54(\mathrm{~m}, \mathrm{H}-\mathrm{C}(4)) ; 1.37\left(\mathrm{~m}, \mathrm{H}_{s y n}-\mathrm{C}(8)\right) ; 1.28\left(\mathrm{~m}, \mathrm{H}_{a n t i}-\mathrm{C}(8)\right) ; 1.26(\mathrm{~m}$, $\mathrm{H}-\mathrm{C}(1)) ; 1.20\left(d d d,{ }^{2} J=15,{ }^{3} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4))=2,{ }^{4} J\left(\mathrm{H}_{e x 0}-\mathrm{C}(3), \mathrm{H}_{e x 0}-\mathrm{C}(5)\right)=2, \mathrm{H}_{e x n}-\mathrm{C}(3)\right)$; relatively important NOE between arom. $\mathrm{H}(7.07 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(5)(3.35 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(6)(3.85 \mathrm{ppm}) / \mathrm{H}$ of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)(2.14 \mathrm{ppm})$; the DQF-COSY (H/H correlated spectrum) of 29 (see Fig.2) allowed to attribute all the H -signals and their coupling constants. MS (70 eV): $327\left(0.9, M^{+\cdot}\left({ }^{37} \mathrm{Cl}\right)\right.$), $325\left(3.4, M^{+\cdot}\left({ }^{35} \mathrm{Cl}\right)\right), 171$ (9), 155 (17), 139 (13), 138 (37), $108(10), 107(16), 106(11), 105(21), 96(11), 93(16), 92(11), 91(57), 79(100)$. Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{3} \mathrm{~S}(325.81)$: $\mathrm{C} 55.30, \mathrm{H} 4.95$, N 4.30 ; found: $\mathrm{C} 55.30, \mathrm{H} 4.83, \mathrm{~N} 4.36$.
6. Addition of NBSCl to 15 . A soln. of $\mathrm{NBSCl}(47 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ was added to a soln. of 15 ($32.5 \mathrm{mg}, 0.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$. After 2 days at $20^{\circ}, \mathrm{NBSCl}(23 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added and the mixture allowed to stand at 20° for 1 day ($360-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$: 6:1:1:1 mixture $\mathbf{3 0 / 3 1 / 3 2 / 3 3 \text {). Flash chromatography on }}$ silica gel ($\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether $2: 1$) gave $64 \mathrm{mg}(80 \%)$ of the adduct mixture which was then separated by HPLC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) giving successively $\mathbf{3 0}(39 \mathrm{mg}, 49 \%), \mathbf{3 3}(6 \mathrm{mg}, 8 \%), \mathbf{3 2}(6 \mathrm{mg}, 8 \%)$, and impure $\mathbf{3 1}(1 \mathrm{mg})$, after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane.
(1 RS,2SR,4SR,5RS,6RS)-6-exo-(2-Nitrophenylthio) spiro/bicyclo/2.2.2 loctane-2,2'-oxirane - 5 -endo-yl Chloride (30). Yellow crystals. M.p. 94-97 ${ }^{\circ}$. UV ($\mathrm{CH}_{3} \mathrm{CN}$): 245 (13600), 272 (sh, 4200), 370 (3100). IR (K Br): 2940, $2860,1590,1560,1515,1450,1430,1395,1335,1305,1285,1250,1235,1170,1145,1100,1055,1040,970,955,915$, $890,875,850,805,775 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.17\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8,{ }^{4} \mathrm{~J}=1.5\right), 7.58(\mathrm{~m}, 2 \mathrm{H}) ; 7.28(\mathrm{~m}, 4$ arom. $\mathrm{H}) ; 4.10\left(d d d,{ }^{3} J\left(\mathrm{H}_{e x o}-\mathrm{C}(5), \mathrm{H}_{e n d o}-\mathrm{C}(6)\right)=5.5,{ }^{3} J\left(\mathrm{H}-\mathrm{C}(1), \mathrm{H}_{\text {endo }}-\mathrm{C}(6)\right)=2,{ }^{4} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(6), \mathrm{H}_{s y n}-\mathrm{C}(7)\right)=2\right.$, $\left.\mathrm{H}_{e n d o}-\mathrm{C}(6)\right) ; \quad 4.06 \quad\left(d d d, \quad{ }^{3} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))=5.5, \quad{ }^{3} J\left(\mathrm{H}-\mathrm{C}(4), \mathrm{H}_{e x o}-\mathrm{C}(5)\right)=2.5, \quad{ }^{4} J\left(\mathrm{H}_{e x o}-\mathrm{C}(5)\right.\right.$,

$\left.\left.\mathrm{H}_{e x o}-\mathrm{C}(3)\right)=1.5, \mathrm{H}_{\text {exo }}-\mathrm{C}(5)\right) ; 2.85\left(d,{ }^{2} \boldsymbol{J}=4.8, \mathrm{H}\right.$ of epoxide cis to $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 2.78\left(d,{ }^{2} \boldsymbol{J}=4.8, \mathrm{H}\right.$ of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)) ; 2.37\left(d d d,{ }^{2} J=15,{ }^{3} J\left(\mathrm{H}_{\text {cndo }}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)\right)=2.5,{ }^{4} J\left(\mathrm{H}_{\text {erdo }}-\mathrm{C}(3), \mathrm{H}_{\text {anti }}-\mathrm{C}(8)\right)=2.5\right.$, $\left.\mathrm{H}_{\text {endo }}-\mathrm{C}(3)\right) ; 2.25(m, \quad \mathrm{H}-\mathrm{C}(4)) ; 2.07\left(m, \quad \mathrm{H}_{u n t i}-\mathrm{C}(7)\right) ; 1.89\left(d d d,{ }^{2} J=15,{ }^{3} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4))=3\right.$, $\left.{ }^{4} J\left(\mathrm{H}_{e x 0}-\mathrm{C}(3), \mathrm{H}_{e x 0}-\mathrm{C}(5)\right)=1.5, \quad \mathrm{H}_{e x 0}-\mathrm{C}(3)\right) ; \quad 1.75 \quad\left(m, \quad \mathrm{CH}_{2}(8)\right) ; \quad 1.61 \quad\left(m, \quad \mathrm{H}_{s y n}-\mathrm{C}(7)\right) ; \quad 1.46 \quad(t d$, $\left.{ }^{3} J\left(\mathrm{H}-\mathrm{C}(1), \mathrm{CH}_{2}(7)\right)=2.5,{ }^{3} J(\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(6))=2, \mathrm{H}-\mathrm{C}(1)\right)$; NOE between arom. $\mathrm{H}(7.58 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(6)(4.10$ ppm ; strong effect), arom. $\mathrm{H} / \mathrm{H}-\mathrm{C}(1)(1.46 \mathrm{ppm})$ and arom. $\mathrm{H} / \mathrm{H}-\mathrm{C}(5)\left(4.06 \mathrm{ppm}\right.$, smaller effects), $\mathrm{H}_{\text {endo }}-\mathrm{C}(6) /$ $\mathrm{H}_{\text {endo }}-\mathrm{C}(3)(2.37 \mathrm{ppm}), \mathrm{H}_{\text {exo }}-\mathrm{C}(5) / \mathrm{H}_{\text {anti }}-\mathrm{C}(8)(1.75 \mathrm{ppm}), \mathrm{H}$ of epoxide cis to $\mathrm{C}(2), \mathrm{C}(3)(2.85 \mathrm{ppm}) / \mathrm{H}_{\text {exo }}-\mathrm{C}(3)$ (1.89 ppm), H of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)(2.78 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(1) . \mathrm{MS}(70 \mathrm{eV}): 327\left(0.3, \mathrm{M}^{+\cdot}\left({ }^{37} \mathrm{Cl}\right)\right), 325\left(0.6, M^{+\cdot}\right.$ $\left({ }^{35} \mathrm{Cl}\right)$), $324(1.3), 171(4), 155(10), 138(14), 117(9), 108(9), 107(15), 106(12), 105(18), 96(11), 93(32), 91(59), 86$ (13), 84 (21), $80(18), 79$ (100). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{3} \mathrm{~S}(325.81)$: C $55.30, \mathrm{H} 4.95, \mathrm{~N} 4.30$; found: $\mathrm{C} 55.43, \mathrm{H}$ 5.00, N 4.39 .
($1 \mathrm{RS}, 2 \mathrm{SR}, 4 \mathrm{SR}, 5 \mathrm{SR}, 6 \mathrm{SR}$)-6-endo-(2-Nitrophenylthio) spiro/bicyclo[2.2.2]octane-2,2'-oxirane $]-5$-exo-yl Chloride (32). Yellow crystals. M.p. 129-130 . UV ($\mathrm{CH}_{3} \mathrm{CN}$): 247 (12500), 272 (sh, 4400), 373 (2800). 1R (KBr): $3080,3030,2940,2920,2860,1585,1560,1450,1430,1360,1330,1275,1265,1245,1210,1200,1180,1170,1145$, $1135,1100,1090,1055,1040,1020,980,960,920,890 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 8.1\left(d d,{ }^{3} J=8.5,{ }^{4} J=1.5\right), 7.69$ $\left(d d,{ }^{3} J=8,{ }^{4} J=1.5\right), 7.57\left(d d d,{ }^{3} J=8,7,{ }^{4} J=1.5\right), 7.32\left(d d d,{ }^{3} J=8.5,7,{ }^{4} J=1.5,4\right.$ arom. H); 4.35 ($d d d$, $\left.{ }^{3} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(5), \mathrm{H}_{e x o}-\mathrm{C}(6)\right)=4.5,{ }^{3} J(\mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5))=3,{ }^{4} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(5), \mathrm{H}_{s y n}-\mathrm{C}(8)\right)=2, \mathrm{H}_{\text {endo }}-\mathrm{C}(5)\right) ; 3.73$ $\left(d d,{ }^{3} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))=4.5,{ }^{3} J\left(\mathrm{H}-\mathrm{C}(1), \mathrm{H}_{e x y}-\mathrm{C}(6)\right)=2.5, \mathrm{H}_{e x 0}-\mathrm{C}(6)\right) ; 2.66\left(d,{ }^{2} J=4.9, \mathrm{H}\right.$ of epoxide cis to $\mathrm{C}(2), \mathrm{C}(3)) ; 2.63\left(d,{ }^{2} J=4.9, \mathrm{H}\right.$ of epoxide trans to $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 2.23(m, \mathrm{H}-\mathrm{C}(4)) ; 2.15\left(m, \mathrm{H}_{\text {ant }}-\mathrm{C}(8)\right) ; 2.10(d d$, $\left.{ }^{2} J=14.5, \quad{ }^{3} J\left(\mathrm{H}_{e x o}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)\right)=3.5, \quad \mathrm{H}_{e x o}-\mathrm{C}(3)\right) ; \quad 1.99\left(d d d, \quad{ }^{3} J=14.5, \quad{ }^{3} J\left(\mathrm{H}_{e n d o}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)\right)=2.5\right.$, $\left.{ }^{4} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(3), \mathrm{H}_{\text {anti }}-\mathrm{C}(8)\right)=2.5, \mathrm{H}_{\text {endo }}-\mathrm{C}(3)\right) ; 1.92\left(\mathrm{~m}, \mathrm{CH}_{2}(7)\right) ; 1.65(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 1.55\left(\mathrm{~m}, \mathrm{H}_{s y n}-\mathrm{C}(8)\right) ; \mathrm{NOE}$ between arom. $\mathrm{H}(7.69 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(6)(3.73 \mathrm{ppm}$, strong effect), arom. $\mathrm{H}(7.69 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(1)(1.65 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(5)$ $(4.35 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(4)(2.23 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(5) / \mathrm{H}_{\text {endo }}-\mathrm{C}(3)(1.94 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(6)(3.73 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(1)(1.65 \mathrm{ppm})$, $\mathrm{H}-\mathrm{C}(6) / \mathrm{H}-\mathrm{C}(7)(1.92 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(1)(1.65 \mathrm{ppm}) / \mathrm{H}$ of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)(2.63 \mathrm{ppm}) . \mathrm{MS}(70 \mathrm{eV}): 327$ $\left(0.3, M^{+\cdot}\left({ }^{37} \mathrm{Cl}\right)\right.$), $326(0.7), 325\left(0.8, M^{+\cdot}\left({ }^{35} \mathrm{Cl}\right)\right), 324(1.6), 171(14), 155(5), 138(22), 108(10), 107(19), 106(13)$, 105 (23), 93 (24), 91 (59), 79 (100). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}$ (325.81): C 55.30, H 4.95, N 4.30; found: C 55.30 , H 4.96, N 4.54 .
(IRS,2SR,4SR,5RS,6RS)-5-endo-\{2-Nitrophenylthio) spiro [bicyclo [2.2.2]octane-2,2'-oxirane]-6-exo-yl Chloride (33). Yellow crystals. M.p. 114-116 ${ }^{\circ}$ UV ($\mathrm{CH}_{3} \mathrm{CN}$): 245 (13400), 272 (sh, 4500), 370 (3000). IR (KBr): $2940,2870,1590,1560,1510,1450,1440,1395,1330,1300,1250,1215,1165,1150,1100,1060,1040,980,960$, $950,920,890,880,850,835 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 7.59\left(d d,{ }^{3} J=8.5,{ }^{4} J=1.5\right), 7.18\left(d d,{ }^{3} J=8.5\right.$, $\left.{ }^{4} J=1.5\right), 6.8,6.51\left(2 d d d,{ }^{3} J=8.5,6.5,{ }^{4} J=1.5,4\right.$ arom. H$) ; 4.50\left(d d d,{ }^{3} J\left(\mathrm{H}_{e x 0}-\mathrm{C}(5), \mathrm{H}_{e n d o}-\mathrm{C}(6)\right)=5\right.$, $\left.{ }^{3} J\left(\mathrm{H}-\mathrm{C}(1), \mathrm{H}_{\text {endo }}-\mathrm{C}(6)\right)=3,{ }^{4} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(6), \mathrm{H}_{s y n}-\mathrm{C}(7)\right)=1, \mathrm{H}_{\text {cndo }}-\mathrm{C}(6)\right) ; 3.44\left(d d d,{ }^{3} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))=5\right.$, $\left.{ }^{3} J(\mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5))=3,{ }^{4} J\left(\mathrm{H}_{e x o}-\mathrm{C}(3), \mathrm{H}_{\text {exo }}-\mathrm{C}(5)\right)=2, \mathrm{H}_{\text {exo }}-\mathrm{C}(5)\right) ; 2.14\left(d,{ }^{2} J=5, \mathrm{H}\right.$ of epoxide cis to $\mathrm{C}(2), \mathrm{C}(3)) ; 2.10\left(d,{ }^{2} J=5, \mathrm{H}\right.$ of epoxide trans to $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 2.01\left(d d d,{ }^{2} J=15,{ }^{3} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)\right)=3\right.$, $\left.{ }^{4} J\left(\mathrm{H}_{\text {endo }}-\mathrm{C}(3), \mathrm{H}_{a n t i}-\mathrm{C}(8)\right)=2.5, \mathrm{H}_{\text {cndo }}-\mathrm{C}(3)\right) ; 1.93\left(\mathrm{~m}, \mathrm{H}_{a n t i}-\mathrm{C}(7)\right) ; 1.64(\mathrm{~m}, \mathrm{H}-\mathrm{C}(4)) ; 1.28\left(\mathrm{~m}, \mathrm{H}_{a n i}-\mathrm{C}(8)\right) ; 1.26$ $(m, \mathrm{H}-\mathrm{C}(1)) ; 1.15\left(d d d,{ }^{2} J=15,{ }^{3} J\left(\mathrm{H}_{e x o}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)\right)=3,{ }^{4} J\left(\mathrm{H}_{e x o}-\mathrm{C}(3), \mathrm{H}_{e x 0}-\mathrm{C}(5)\right)=2, \mathrm{H}_{e x 0}-\mathrm{C}(3)\right) ; 1.10(m$, $\left.\mathrm{H}_{s y n}-\mathrm{C}(7), \mathrm{H}_{s y n}-\mathrm{C}(8)\right)$; NOE between arom. $\mathrm{H}(7.18 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(5)$ (3.44 ppm , strong effect), arom. H (7.18 $\mathrm{ppm}) / \mathrm{H}-\mathrm{C}(4)(\mathrm{I} .64 \mathrm{ppm}$, weak effect), $\mathrm{H}-\mathrm{C}(6)(4.50 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(1)(1.26 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(5)(3.44 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(4)(1.64$ $\mathrm{ppm}), \mathrm{H}-\mathrm{C}(5) / \mathrm{H}_{\text {anti }}-\mathrm{C}(8)(1.28 \mathrm{ppm}), \mathrm{H}$ of epoxide cis to $\mathrm{C}(2), \mathrm{C}(3)(2.14 \mathrm{ppra}) / \mathrm{H}_{\text {exo }}-\mathrm{C}(3)(1.15 \mathrm{ppm}), \mathrm{H}$ of epoxide trans to $\mathrm{C}(1), \mathrm{C}(3)(2.10 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(1)(1.26 \mathrm{ppm}) . \mathrm{MS}(70 \mathrm{eV}): 327\left(0.1, M^{+^{*}}\left({ }^{37} \mathrm{Cl}\right)\right), 326(0.4), 325(0.4$, $M^{+}\left({ }^{35} \mathrm{Cl}\right)$, $324(0.7), 171(5), 155(12), 138(16), 108(10), 107(18), 106(12), 105(20), 93(20), 91(56), 79(100)$. Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{3} \mathrm{~S}$ (325.81); C 55.30, H 4.95, N 4.30; found: C 55.45, H 4.97, N 4.46.
7. (1 RS,2RS,4SR)-5-(2-Nitrophenylthio) spiro[bicyclo[2.2.2]oct-5-ene-2,2'-oxirane] (34). Freshly sublimed t-BuOK ($35 \mathrm{mg}, 0.31 \mathrm{mmol}$) was added to a stirred mixture of 29 ($30 \mathrm{mg}, 0.09 \mathrm{mmol}$) in anh. THF (5 ml) cooled to -78°. After stirring at -78° for 1 h , the temp. was allowed to reach 20° in $c a .4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The org. extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered through silica gel. After solvent evaporation, 34 was obtained as a yellow, unstable oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.72,7.06\left(2 d d,{ }^{3} \mathrm{~J}=8\right.$, $\left.{ }^{4} J=1\right), \quad 6.78, \quad 6.54 \quad\left(2 d d d, \quad{ }^{3} J=8, \quad 8, \quad{ }^{4} J=1, \quad 4\right.$ arom. $\left.\quad \mathrm{H}\right) ; \quad 6.36 \quad\left(d d, \quad{ }^{3} J(\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(6))=7\right.$, $\left.{ }^{4} J\left(\mathrm{H}-\mathrm{C}(6), \mathrm{H}_{s y n}-\mathrm{C}(7)\right)=1.5, \mathrm{H}-\mathrm{C}(6)\right) ; 2.34,2.28\left(2 d,{ }^{2} J=5, \mathrm{CH}_{2}\right.$ of epoxide $) ; 2.05\left(\mathrm{~m}, \mathrm{CH}_{2}(7)\right) ; 1.75(\mathrm{~m}$, $\mathrm{H}-\mathrm{C}(1)) ; 1.56\left(\mathrm{dm},{ }^{2} \mathrm{~J}=14, \mathrm{H}-\mathrm{C}(3)\right) ; 1.45-1.28(\mathrm{~m}, \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(8)) ; 1.22-1.07(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(4))$; NOE between $\mathrm{H}-\mathrm{C}(6)(6.36 \mathrm{ppm}) / \mathrm{H}-\mathrm{C}(1)(1.75 \mathrm{ppm}), \mathrm{H}-\mathrm{C}(1) / \mathrm{H}$ of epoxide trans to $\mathrm{C}(2), \mathrm{C}(3)(2.34 \mathrm{ppm})$.

REFERENCES

[1] A. Rubello, P. Vogel, G. Chapuis, Helv. Chim. Acta 1987, 70, 1638.
[2] M. Hardy, P. A. Carrupt, P. Vogel, Helv. Chim. Acta 1976, 59, 1685; O. Pilet, A. Chollet, P. Vogel, ibid. 1979, 62, 2341; M. Avenati, O. Pilet, P.-A. Carrupt, P. Vogel, ibid. 1982, 65, 178.
[3] R. Gabioud, P. Vogel, Tetrahedron 1980, 36, 149.
[4] C. Mahaim, L. Schwager, P. -A. Carrupt, P. Vogel, Tetrahedron Lett. 1983, 24, 3603.
[5] W. Adam, N. Carballeira, E.-M. Peters, K. Peters, H.G. von Schnering, J. Am. Chem. Soc. 1983, 105, 5132; W. Adam, E. Crämer, Tetrahedron Lett. 1986, 27, 3361; W. Adam, N. Carballeira, E. Crämer, E.-M. Peters, K. Peters, H. G. von Schnering, Chem. Ber. 1987, 120, 521.
[6] R. S. Bly, C.M. DuBose, Jr., G. B. Konizer, J. Org. Chem. 1968, 33, 2188.
[7] E.J. Corey, M. Chaykosky, J. Am. Chem. Soc. 1965, 87, 1353; Y. G. Gololobov, A. N. Nesmeyanov, V.P. Lysenko, I. E. Boldeskul, Tetrahedron 1987, 43, 2609.
[8] P. D. Bartlett, B. E. Tate, J. Am. Chem. Soc. 1956, 78, 2473; P. K. Freeman, D. M. Balls, D. J. Brown, J. Org. Chem. 1968, 33, 2211.
[9] B.C.C. Cantello, J. M. Melior, C. F. Webb, J. Chem. Soc., Perkin Trans. 2 1974, 22.
[10] K. Black, P. Vogel, Helv. Chim. Acta 1984, 67, 1612.
[11] K. Alder, G. Stein, Justus Liebigs Ann. Chem. 1931, 485, 211; ibid. 1935, 515, 185; A. D. Allen, T.T. Tidwell, J. Am. Chem. Soc. 1982, 104, 3145 and ref. cit. therein; P. J. Garratt, F. Hollowood, J. Org. Chem. 1982, 47, 68; P. v. R. Schleyer, J. Am. Chem. Soc. 1967, 89, 3901; U. Burkert, Angew. Chem., Int. Ed. 1981, 20, 572; K. N. Houk, in 'Reactive Intermediates', Eds. M. Jones and R.A. Moss, Wiley, New York, 1978, Vol. 1, p. 326; S. Inagaki, H. Fujimoto, K. Fukui, J. Am. Chem. Soc. 1976, 98, 4054; N. G. Rondan, M. N. Paddon-Row, P. Caramella, K. N. Houk, ibid. 1981, 103, 2436; R. Huisgen, Pure Appl. Chem. 1981, 53, 171.
[12] D. Gagnaire, E. Payo-Subiza, Bull. Soc. Chim. Fr. 1963, 2627; K. C. Ramey, D. C. Lini, J. Magn. Reson. 1970, 3. 94; W. L. Nelson, D. R. Alten, J. Heterocycl. Chem. 1972, 9, 561; F. Kienzle, Helv. Chim. Acta 1975, 58, 1180; C. Mahaim, P. Vogel, ibid. 1982, 65, 866; P. Laszlo, P. v. R. Schleyer, J. Am. Chem. Soc. 1964, 86, 1171 ; R. V. Moen, H. S. Makowski, Anal. Chem. 1971, 43, 1629; R. Gassend, Y. Limouzin, J. C. Maire, Org. Magn. Reson. 1974, 6, 259; H. Joela, ibid. 1977,9, 338; R. Sanchez-Obregon, M. Salmon, F. Walls, ibid. 1972, 4, 885.
[13] G. H. Schmid, D. G. Garratt, 'The Chemistry of the Functional Groups: Suppl. A: the Chemistry of DoubleBonded Functional Groups', Ed. S. Patai, J. Wiley \& Sons, London, 1977, pp.828-854; R. S. Fahey, Topics Stereochem. 1968, 3, 63; K. Toyoshima, T. Okuyama, T. Fueno, J. Org. Chem. 1978, 43, 2789; S. Raucher, ibid. 1977, 42, 2950; D. G. Garratt, G. H. Schmid, ibid. 1977, 42, 1776; D. G. Garratt, D.M. Ryan, P.L. Beaulieu, ibid. 1980, 45, 839; G. H. Schmid, S. Yeroushalmi, D. G. Garratt, ibid. 1980, 45, 910; A. Toshimitsu, T. Aoai, S. Uemura, M. Okano, J. Chem. Soc., Chem. Commun. 1980, 1041 ; N. S. Zefirov, N. K. Sadovaja, L.A. Novgorodtseva, R. Sh. Achmedova, S.V. Baranov, I. V. Bodrikov, Tetrahedron 1979, 35, 2759; see also: G. A. Jones, C.J.M. Stirling, N. G. Bromby, J. Chem. Soc., Perkin Trans. 2 1983, 385; G. H. Schmid, D.I. Macdonald, Tetrahedron Lett. 1984, 25, 157.
[14] C. Le Drian, P. Vogel, Helv. Chim. Acta 1987, 70, 1703; C. Le Drian, P. Vogel, Tetrahedron Lett. 1987, 28, 1523 and ref. cit. therein.
[15] J.C. Martin, P. D. Bartlett, J. Am. Chem. Soc. 1957, 79, 2533; J. B. Lambert, E. G. Larson, ibid. 1985, 107, 7546 ; L. A. Spurlock, R. G. Fayter, J., ibid. 1972, 94, 2707; L. A. Paquette, I. R. Dunkin, ibid. 1973, 95, 3067; Yu. K. Yur'ev, N. S. Zefirov, J. Gen. Chem. USSR 1961, 31, 772.
[16] D. L. Whalen, Tetrahedron Lett. 1978, 4973; M. Santelli, J. Viala, Tetrahedron 1978, 34, 2327; D. L. Whalen, S. Brown, A. M. Ross, H. M. Russel, J. Org. Chem. 1978, 43, 428.
[17] a) P. Vogel, in 'Carbocation Chemistry', Elsevier, Amsterdam, 1985, Chapt. VII, p. 242; b) ibid., Chapt. V.
[18] P.-A. Carrupt, P. Vogel, Tetrahedron Lett. 1982, 23, 2563.
[19] K. A. Black, P. Vogel, J. Org. Chem. 1986, 51, 5341.
[20] M. Avenati, P.-A. Carrupt, D. Quarroz, P. Vogel, Helv. Chim. Acta 1982, 65, 188.
[21] P.-A. Carrupt, P. Vogel, Tetrahedron Lett. 1984, 25, 2879.
[22] P.-A. Carrupt, R. Gabioud, A. Rubello, P. Vogel, E. Honegger, E. Heilbronner, Hel. Chim. Acta 1987, 70, 1540.

[^0]: ${ }^{1}$) Interactions between non-conjugated chromophorcs, Part 28. Part 27, see [1].
 ${ }^{2}$) Part of the planned Ph. D. thesis of F. Claret, Ecolc Polytechnique Fédérale de Lausanne.
 ${ }^{3}$) The descriptors syn and anti refer to the positions of groups on the same and opposite side, respectively, with respect to the epoxy group.

[^1]: ${ }^{4}$) The descriptors endo/exo for bicyclo[2.2.2]alk-2-enes or -alkanes refer to orientations of groups with respect to the unsubstituted main bridge $\mathrm{CH}_{2} \mathrm{CH}_{2}$.

[^2]: The structures of adducts $22-24,28-30,32$, and 33 followed from their spectral data and elemental analyses. The $360-\mathrm{MHz}{ }^{7} \mathrm{H}-\mathrm{NMR}$ spectra of the crude reaction mixture confirmed the structures proposed for the minor compounds $\mathbf{2 6}, \mathbf{2 7}$, and $\mathbf{3 1}$ which could not be isolated. Signals in the $360-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were assigned by double irradiation experiments and measurements of nuclear Overhauser effects (NOE; see Exper. Part). The

